Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.920
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612616

RESUMO

Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Proteostase , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Dobramento de Proteína , Proteólise
2.
Phys Rev Lett ; 132(13): 138402, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613272

RESUMO

Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein. Our results reveal that HI helps select fast folding pathways to the native state without being kinetically trapped, significantly speeding up the folding kinetics compared to its absence. First, the directional flow along the protein backbone expedites protein collapse. Then, the incompressibility-induced squeezing flow effects retard the accumulation of non-native hydrophobic contacts, thus preventing the protein from being trapped in local energy minima during the conformational search of the native structure. We also find that the significance of HI in folding kinetics depends on temperature, with a pronounced effect under biologically relevant conditions. Our findings suggest that HI, particularly the short-range squeezing effect, may be crucial in avoiding protein misfolding.


Assuntos
Hidrodinâmica , Dobramento de Proteína , Humanos , Aminoácidos , Biofísica , Cinética
3.
Protein Sci ; 33(5): e4986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607226

RESUMO

Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.


Assuntos
Proteínas Intrinsicamente Desordenadas , Dobramento de Proteína , Água/química , Cloreto de Sódio , Glicina/química , Interações Hidrofóbicas e Hidrofílicas
4.
Q Rev Biophys ; 57: e4, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38597675

RESUMO

Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the ß-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of ß- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.


Assuntos
Dobramento de Proteína , Proteínas , Simulação por Computador , Proteínas/química , Engenharia de Proteínas , Biologia , Cinética , Termodinâmica
5.
BMC Microbiol ; 24(1): 108, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566014

RESUMO

BACKGROUND: Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS: We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS: This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Proteínas de Bactérias/metabolismo , Proteína Estafilocócica A , Dobramento de Proteína , Proteínas de Membrana/metabolismo , Proteômica , Infecções Estafilocócicas/microbiologia , Imunoglobulinas/metabolismo
6.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38597156

RESUMO

De novo genes emerge from previously noncoding stretches of the genome. Their encoded de novo proteins are generally expected to be similar to random sequences and, accordingly, with no stable tertiary fold and high predicted disorder. However, structural properties of de novo proteins and whether they differ during the stages of emergence and fixation have not been studied in depth and rely heavily on predictions. Here we generated a library of short human putative de novo proteins of varying lengths and ages and sorted the candidates according to their structural compactness and disorder propensity. Using Förster resonance energy transfer combined with Fluorescence-activated cell sorting, we were able to screen the library for most compact protein structures, as well as most elongated and flexible structures. We find that compact de novo proteins are on average slightly shorter and contain lower predicted disorder than less compact ones. The predicted structures for most and least compact de novo proteins correspond to expectations in that they contain more secondary structure content or higher disorder content, respectively. Our experiments indicate that older de novo proteins have higher compactness and structural propensity compared with young ones. We discuss possible evolutionary scenarios and their implications underlying the age-dependencies of compactness and structural content of putative de novo proteins.


Assuntos
Dobramento de Proteína , Proteínas , Humanos , Proteínas/genética , Estrutura Secundária de Proteína , Biblioteca Gênica
7.
Nat Commun ; 15(1): 3333, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637533

RESUMO

Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.


Assuntos
Dobramento de Proteína , Deficiência de alfa 1-Antitripsina , Humanos , Chaperonas Moleculares/metabolismo , Proteostase , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Variação Genética
8.
PLoS Biol ; 22(4): e3002560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574172

RESUMO

In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection. This reduction reflects a 3-fold increase in ribosome association with DnaK and a 30-fold decrease in ribosome association with trigger factor, the chaperone normally associated with translating ribosomes. Surprisingly, this reduction does not involve J-domain cochaperones, unlike previously known functions of DnaK. Removing the 74 C-terminal amino acids of the 638-residue long DnaK impeded DnaK association with ribosomes and reduction of protein synthesis, rendering S. Typhimurium defective in protein homeostasis during cytoplasmic Mg2+ starvation. DnaK-dependent reduction in protein synthesis is critical for survival against Mg2+ starvation because inhibiting protein synthesis in a dnaK-independent manner overcame the 10,000-fold loss in viability resulting from DnaK truncation. Our results indicate that DnaK protects bacteria from infection-relevant stresses by coordinating protein synthesis with protein folding capacity.


Assuntos
Proteínas de Escherichia coli , Magnésio , Magnésio/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Bactérias/metabolismo , Salmonella
9.
Protein Sci ; 33(4): e4949, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511500

RESUMO

Primary defects in folding of mutant proinsulin can cause dominant-negative proinsulin accumulation in the endoplasmic reticulum (ER), impaired anterograde proinsulin trafficking, perturbed ER homeostasis, diminished insulin production, and ß-cell dysfunction. Conversely, if primary impairment of ER-to-Golgi trafficking (which also perturbs ER homeostasis) drives misfolding of nonmutant proinsulin-this might suggest bi-directional entry into a common pathological phenotype (proinsulin misfolding, perturbed ER homeostasis, and deficient ER export of proinsulin) that can culminate in diminished insulin storage and diabetes. Here, we've challenged ß-cells with conditions that impair ER-to-Golgi trafficking, and devised an accurate means to assess the relative abundance of distinct folded/misfolded forms of proinsulin using a novel nonreducing SDS-PAGE/immunoblotting protocol. We confirm abundant proinsulin misfolding upon introduction of a diabetogenic INS mutation, or in the islets of db/db mice. Whereas blockade of proinsulin trafficking in Golgi/post-Golgi compartments results in intracellular accumulation of properly-folded proinsulin (bearing native disulfide bonds), impairment of ER-to-Golgi trafficking (regardless whether such impairment is achieved by genetic or pharmacologic means) results in decreased native proinsulin with more misfolded proinsulin. Remarkably, reversible ER-to-Golgi transport defects (such as treatment with brefeldin A or cellular energy depletion) upon reversal quickly restore the ER folding environment, resulting in the disappearance of pre-existing misfolded proinsulin while preserving proinsulin bearing native disulfide bonds. Thus, proper homeostatic balance of ER-to-Golgi trafficking is linked to a more favorable proinsulin folding (as well as trafficking) outcome.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Camundongos , Animais , Proinsulina/genética , Proinsulina/química , Dobramento de Proteína , Insulina/química , Retículo Endoplasmático , Homeostase , Dissulfetos/química
10.
Protein Sci ; 33(4): e4961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511674

RESUMO

Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) has been implicated in familial form of amyotrophic lateral sclerosis (ALS). A natively folded SOD1 forms a tight homodimer, and the dimer dissociation has been proposed to trigger the oligomerization/aggregation of SOD1. Besides increasing demand for probes allowing the detection of monomerized forms of SOD1 in various applications, the development of probes has been limited to conventional antibodies. Here, we have developed Mb(S4) monobody, a small synthetic binding protein based on the fibronectin type III scaffold, that recognizes a monomeric but not dimeric form of SOD1 by performing combinatorial library selections using phage and yeast-surface display methods. Although Mb(S4) was characterized by its excellent selectivity to the monomeric conformation of SOD1, the monomeric SOD1/Mb(S4) complex was not so stable (apparent Kd ~ µM) as to be detected in conventional pull-down experiments. Instead, the complex of Mb(S4) with monomeric but not dimeric SOD1 was successfully trapped by proximity-enabled chemical crosslinking even when reacted in the cell lysates. We thus anticipate that Mb(S4) binding followed by chemical crosslinking would be a useful strategy for in vitro and also ex vivo detection of the monomeric SOD1 proteins.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Superóxido Dismutase-1/química , Esclerose Amiotrófica Lateral/genética , Dobramento de Proteína , Superóxido Dismutase/química , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Mutação
11.
Phys Rev E ; 109(2-1): 024409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491671

RESUMO

We determine the phase diagram of DNA with inter- and intrastrand native-pair interactions that mimic the compaction of DNA. We show that DNA takes an overall sheetlike structure in the region where an incipient transition to a compact phase would have occurred. The stability of this phase is due to the extra entropy from the folding of the sheet, which is absent in the remaining polymerlike states of the phase diagram.


Assuntos
Dobramento de Proteína , Entropia , Termodinâmica
12.
Methods Enzymol ; 694: 237-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492953

RESUMO

Proteins fold to their native states by searching through the free energy landscapes. As single-domain proteins are the basic building block of multiple-domain proteins or protein complexes composed of subunits, the free energy landscapes of single-domain proteins are of critical importance to understand the folding and unfolding processes of proteins. To explore the free energy landscapes of proteins over large conformational space, the stability of native structure is perturbed by biochemical or mechanical means, and the conformational transition process is measured. In single molecular manipulation experiments, stretching force is applied to proteins, and the folding and unfolding transitions are recorded by the extension time course. Due to the broad force range and long-time stability of magnetic tweezers, the free energy landscape over large conformational space can be obtained. In this article, we describe the magnetic tweezers instrument design, protein construct design and preparation, fluid chamber preparation, common-used measuring protocols including force-ramp and force-jump measurements, and data analysis methods to construct the free energy landscape. Single-domain cold shock protein is introduced as an example to build its free energy landscape by magnetic tweezers measurements.


Assuntos
Fenômenos Magnéticos , Proteínas , Proteínas/química , Conformação Molecular , Dobramento de Proteína , Termodinâmica
13.
Methods Enzymol ; 694: 285-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492955

RESUMO

Single-molecule magnetic tweezers have recently been adapted for monitoring the interactions between transmembrane helices of membrane proteins within lipid bilayers. In this chapter, we describe the procedures of conducting studies on membrane protein folding using a robust magnetic tweezer method. This tweezer method is capable of observing thousands of (un)folding transitions over extended periods of several to tens of hours. Using this approach, we can dissect the folding pathways of membrane proteins, determine their folding time scales, and map the folding energy landscapes, with a higher statistical reliability. Our robust magnetic tweezers also allow for estimating the folding speed limit of helical membrane proteins, which serves as a link between the kinetics and barrier energies.


Assuntos
Proteínas de Membrana , Dobramento de Proteína , Proteínas de Membrana/metabolismo , Reprodutibilidade dos Testes , Bicamadas Lipídicas , Fenômenos Magnéticos , Cinética
14.
Mol Biol Rep ; 51(1): 380, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429584

RESUMO

BACKGROUND: Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders. METHODS AND RESULTS: The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant. CD studies showed predominantly alpha-helical content and the highest stability of NTD-IRF6 at pH 9.0. A comparison of native and renatured protein depicts loss in the secondary structural content. Intrinsic fluorescence and quenching studies have identified that tryptophan residues are majorly present in the buried areas of the protein and a small fraction was on or near the protein surface. Upon the protein unfolding with a higher concentration of denaturant urea, the peak of fluorescence intensity decreased and red shifted, confirming that tryptophan residues are majorly present in a more polar environment. While regulating IFNß gene expression during viral infection, the N-terminal domain binds to the promoter region of Virus Response Element-Interferon beta (VRE-IFNß). Along with the protein folding analysis, this study also aimed to identify the DNA-binding activity and determine the binding affinities of NTD-IRF6 with the VRE-IFNß promoter region. The protein-DNA interaction is specific as demonstrated by gel retardation assay and the kinetics of molecular interactions as quantified by Biolayer Interferometry showed a strong affinity with an affinity constant (KD) value of 7.96 × 10-10 M. CONCLUSION: NTD-IRF6 consists of a mix of α-helix and ß-sheets that show temperature-dependent cooperative unfolding between 40 °C and 55 °C. Urea-induced unfolding shows moderate tolerance to urea as the mid-transition concentration of urea (Cm) is 3.2 M. The tryptophan residues are majorly buried as depicted by fluorescence quenching studies. NTD-IRF6 has a specific and high affinity toward the promoter region of VRE-IFNß.


Assuntos
Fatores Reguladores de Interferon , Dobramento de Proteína , Triptofano , Humanos , DNA , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/fisiologia , Triptofano/metabolismo , Ureia
15.
Int J Biol Macromol ; 265(Pt 1): 130420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460641

RESUMO

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.


Assuntos
Cisteína Endopeptidases , Plasmodium falciparum , Dobramento de Proteína
16.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Humanos , Masculino , Animais , Camundongos , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Sêmen/metabolismo , Espermatozoides/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
17.
EMBO Rep ; 25(4): 1711-1720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467907

RESUMO

The assembly of ß-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the ß-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of ß-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.


Assuntos
Proteínas de Escherichia coli , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
18.
PLoS Comput Biol ; 20(3): e1011901, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470915

RESUMO

A novel class of protein misfolding characterized by either the formation of non-native noncovalent lasso entanglements in the misfolded structure or loss of native entanglements has been predicted to exist and found circumstantial support through biochemical assays and limited-proteolysis mass spectrometry data. Here, we examine whether it is possible to design small molecule compounds that can bind to specific folding intermediates and thereby avoid these misfolded states in computer simulations under idealized conditions (perfect drug-binding specificity, zero promiscuity, and a smooth energy landscape). Studying two proteins, type III chloramphenicol acetyltransferase (CAT-III) and D-alanyl-D-alanine ligase B (DDLB), that were previously suggested to form soluble misfolded states through a mechanism involving a failure-to-form of native entanglements, we explore two different drug design strategies using coarse-grained structure-based models. The first strategy, in which the native entanglement is stabilized by drug binding, failed to decrease misfolding because it formed an alternative entanglement at a nearby region. The second strategy, in which a small molecule was designed to bind to a non-native tertiary structure and thereby destabilize the native entanglement, succeeded in decreasing misfolding and increasing the native state population. This strategy worked because destabilizing the entanglement loop provided more time for the threading segment to position itself correctly to be wrapped by the loop to form the native entanglement. Further, we computationally identified several FDA-approved drugs with the potential to bind these intermediate states and rescue misfolding in these proteins. This study suggests it is possible for small molecule drugs to prevent protein misfolding of this type.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Simulação por Computador , Software , Espectrometria de Massas
19.
Methods Mol Biol ; 2778: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478268

RESUMO

ß-barrels are a class of membrane proteins made up of a cylindrical, anti-parallel ß-sheet with a hydrophobic exterior and a hydrophilic interior. The majority of proteins found in the outer membranes (OMs) of Gram-negative bacteria, mitochondria, and chloroplasts are ß-barrel outer membrane proteins (OMPs). ß-barrel OMPs have a diverse repertoire of functions, including nutrient transport, secretion, bacterial virulence, and enzymatic activity. Here, we discuss the broad functional classes of ß-barrel OMPs, how they are folded into the membrane, and the future of ß-barrel OMP research and its applications.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Bactérias Gram-Negativas/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína
20.
Methods Mol Biol ; 2778: 65-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478272

RESUMO

The in vitro reconstruction assay enables us to evaluate in detail the insertion and proper protein folding (together termed assembly) of ß-barrel membrane proteins. Here, we introduce an in vitro reconstitution experiments using isolated membrane fractions from Escherichia coli (E. coli). Membrane fractions isolated from E. coli cells and disrupted by sonication, which we have termed E. coli microsomal (mid-density) membrane (EMM), are ideal for biochemical experiments, as they can be harvested by high-speed centrifugation and do not require ultra-centrifugation. EMM pretreated with detergent can assemble externally supplemented ß-barrel membrane proteins via intact ß-barrel assembly machinery (BAM) complex retained in EMM. This method not only allows assembly analysis with inexpensive equipment but it also can be applied to drug screening using assembly as an indicator with high reproducibility. In this chapter, we introduce our method of evaluating assembled ß-barrel membrane proteins by demonstrating four representative ß-barrel membrane proteins: E. coli major porins OmpA and OmpF; enterohemorrhagic E. coli (EHEC) autotransporter EspP, and Haemophilus influenzae (H. influenzae) adhesin Hia.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Reprodutibilidade dos Testes , Proteínas da Membrana Bacteriana Externa/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...